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Various methods achieving importance sampling in ensembles of nonequilibrium trajecto-
ries enable one to estimate free energy differences and, by maximum-likelihood post-pro-
cessing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a
more direct method in which a posterior likelihood function is used both to construct the
steered dynamics and to infer the contribution to equilibrium of all the sampled states. The
method is implemented with two steering schedules. First, using non-autonomous steer-
ing, we calculate the migration barrier of the vacancy in Fe-a. Second, using an autonomous
scheduling related to metadynamics and equivalent to temperature-accelerated molecular
dynamics, we accurately reconstruct the two-dimensional free energy landscape of the 38-
atom Lennard-Jones cluster as a function of an orientational bond-order parameter and
energy, down to the solid–solid structural transition temperature of the cluster and with-
out maximum-likelihood post-processing.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

One important application of molecular simulation is the estimation of the Landau free energy F of a given multi-particle
system with respect to an order parameter n
FðnÞ ¼ �kBT ln PðnÞ; ð1Þ
where T, kB and P(n) denote temperature, Boltzmann’s constant and the probability to observe the system with value n for the
order parameter, respectively. Calculating Landau free energies thus amounts to measuring occurrence probabilities, a task
that molecular simulation fails to achieve as soon as relevant portions of the phase space are rarely explored. So as to restore
numerical ergodicity, many simulation techniques have been devised, based on umbrella sampling [1]. The generic idea of
this technique consists in resorting to a judicious steering or restraining potential that enhances exploration of regions of
phase space that would be poorly sampled otherwise. In its usual implementation, a series of umbrella sampling simulations
[1] are first performed so as to cover the various regions of interest, and then the collected averages are combined using one
of the various reweighing procedures [2–4] related to Bennett’s acceptance ratio method [5] and based on likelihood max-
imization [6].

In this context, Hummer and Szabo [7] proposed to reconstruct the free energy profiles by applying the histogram
reweighing procedure to nonequilibrium simulations [8] instead of equilibrium simulations. To achieve this, they introduce
an additional variable nadd and connect it to the relevant order parameter n via the potential of umbrella sampling. Then, they
mechanically steer the additional variable so as to push the particle system along the direction of the order parameter. They
. All rights reserved.
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finally reconstruct the equilibrium properties by means of a two-step procedure. The first step provides the contribution to
equilibrium at a given time-slice in trajectory space (after the collected nonequilibrium data have been reweighted using the
probability ratios of the reverse-to-forward dynamics [9,10] within a path-average [11]). In a second step, contributions aris-
ing from the entire range of times are finally combined using the weighted histogram analysis method [2,3], as in conven-
tional umbrella sampling.

We herein propose an estimator enabling one to retrieve equilibrium information from nonequilibrium trajectories. Like
the aforementioned approaches based on Bennett’s acceptance ratio method, our estimator resorts to reverse-to-forward
probability ratios and retrieves information included in all time-slices. The estimator will have two advantages: (i) it does
not involve any post-processing; (ii) it can be used with more general steering schedules than the one considered by Hum-
mer and Szabo. We will illustrate these two points on the reconstruction of free energy landscapes.

Concerning point (ii), we will consider Langevin dynamics in which steering arises from additional restraining variables
evolving stochastically and autonomously out of equilibrium into otherwise unexplored regions of phase space, enabling en-
hanced sampling along the steering directions. This way of proceeding can possibly be achieved by coupling the additional
variables to high-temperature thermostats [12–14], as in multi-temperature sampling techniques [15,16], or by means of an
adaptive biasing potential [17]. The former approach has been called temperature-accelerated molecular dynamics (TAMD)
and the latter one metadynamics.

The article is organized as follows. Section 2 establishes the general theoretical framework for the steered dynamics: the
particle system and its additional variables are defined in Section 2.1, the equations of the dynamics themselves are intro-
duced in Section 2.2, while the reverse-to-forward probability ratios associated with the dynamics, derived in Section 2.3, are
used to discuss the two steering schedules for the dynamics in Section 2.4. In this framework, both the autonomous steering
schedule of TAMD and the usual schedules that let a single steering variable evolve non-autonomously at constant speed [7]
appear as two particular limiting regimes. The reverse-to-forward probability ratios of Section 2.3 are used to construct the
two-state estimators [18–23] reviewed in Section 3 and developed for calculating free energy differences with non-auton-
omous steering. Building on the approaches of Section 3, we propose in Section 4 an extended sampler and estimator en-
abling free energy reconstruction. The derivation that is given works both for autonomous and non-autonomous steering
schedules. For completeness, we eventually show how the residence weight algorithm that is proposed relates to the
waste-recycling algorithm [25,26].

Section 5 illustrates the performance of the proposed estimator with non-autonomous steering for a one-dimensional recon-
struction problem. We compute the migration free energy of a vacancy in Iron (a-Fe). The second application given in Section 6
uses autonomous steering and reconstructs a two-dimensional free-energy landscape of the Lennard-Jones cluster with 38
atoms (LJ38). This benchmark system presents a rugged energy landscape, with two energy funnels separated by a high free en-
ergy barrier. It has been extensively studied using various methods, which eventually permits one to assess the relative numer-
ical performance of our method with respect to existing methods. Concluding remarks are finally given in Section 7.

2. Extended Hamiltonian and steered dynamics

2.1. Extended system

Denote by r the particle position vector of dimension 3I and by nadd an auxiliary vector of dimension J. The potential en-
ergy of the particle is E(r), while the steering potential is [12,17]
V r; nadd
� �

¼ 1
2

XJ

j¼1

jj nadd
j � njðrÞ

��� ���2;

where the order parameter n = (n1, . . . ,nJ) of dimension J is represented by a collective variable that is function of the particle
positions. We denote the vector positions and vector momenta in the extended system by q and p, respectively. We have
q ¼ ðr; naddÞ ¼ ðr1; . . . ; r3I; n

add
1 ; . . . ; nadd

J Þ. The ith components of these vectors are, respectively, denoted by qi and pi, with
1 6 i 6 3I + J. Let mi be the mass associated to the ith component, and denote its momentum by pi ¼ mi _qi where dots above

coordinates designate time derivation. Denoting VðqÞ ¼ EðrÞ þ V r; nadd
� �

the (total) potential energy of the extended system

and Hðp;qÞ ¼
P3IþJ

i¼1
p2

i
2mi
þ VðqÞ its Hamiltonian, the normalized canonical probability density at temperature b�1 = kBT is
qðp;qÞ ¼ 1

h3II!
ebF�bHðp;qÞ;
where the normalizing factor F is the Helmholtz free energy of the extended system. It is related to the partition function
logarithm � �
F ¼ �b�1 ln
1

h3II!

Z
e�bHðp;qÞdpdq :
Here, the infinitesimal volume with respect to coordinates reads
dpdq ¼
Y3IþJ

i¼1

dpidqi: ð2Þ
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Canonical averages of any quantity A(r) defined with respect to particle positions can be taken in the extended ensemble (x
denoting its phase space) as follows:
hAi ¼
R

AðrÞ exp½�bEðrÞ� drR
exp½�bEðrÞ�dr

; ð3Þ

¼
R
x AðrÞ exp½�bHðp;qÞ�dpdqR

x exp½�bHðp;qÞ�dpdq
;

¼
Z

x
AðrÞqðp;qÞdpdq; ð4Þ
because contributions arising from the additional variables nadd can be inserted inside both integrals in Eq. (3). Hence, the
additional variables and potentials do not affect the thermodynamic expectations of the particle system.

2.2. Steered Langevin dynamics

We consider that any coordinate qi with 1 6 i 6 3I + J is coupled to an independent thermal reservoir at temperature T.
The traditional Langevin dynamics amount to propagating the system by solving the equations of motion (fi ¼ �@qi

H)
_qi ¼ m�1
i pi _pi ¼ fi � cipi þ biðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cikBTmi

q
; ð5Þ
where bi represents a white noise of amplitude 1 and zero mean, while ci denotes the friction characterizing the coupling
intensity with the ith thermal bath. Here the amplitude of the fluctuations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cikBTmi

p
determines the temperature T.

Let us assume that we have prepared the system in thermodynamic equilibrium at time t = 0 [e.g. by propagating the
Langevin dynamics (5) long enough and then setting the time to zero]. At t = 0, we switch on the external forces
f ext
j ¼ ðlj � 1Þfj to act mechanically upon on the additional variables qj. The rescaling factors lj are such that 0 6 lj 6 1

for 3I < j 6 3I + J. We also define li = 1 for 1 6 i 6 3I by extension and we have f ext
j þ fj ¼ ljfj. The frictional forces and the

square of the fluctuations acting upon the additional variables are rescaled in the same way using the lj’s. The extended sys-
tem is then propagated for a duration s using the steered Langevin dynamics below (using the convention on the indices,
1 6 i 6 3I and 3I < j 6 3I + J):
_qi ¼ m�1
i pi _pi ¼ fi � cipi þ biðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cikBTmi

q
; ð6Þ

_qj ¼ m�1
j pj _pj ¼ ljfj � ljcjpj þ bjðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ljcjkBTmj

q
: ð7Þ
The rescaling of the dynamics amounts to unbalancing the interactions between particles and additional variables and to
decreasing the coupling intensity with the jth thermal bath while maintaining constant its temperature T. The effect of
the external forces is to make the system depart from thermodynamic equilibrium, by reducing the restraining forces acting
upon the additional variables, which enhances exploration of phase space along the variables nadd. Additional commentaries
about the dynamics (7) have been differed to Section 2.4 because they are based on the reverse-to-forward probability ratio
derived in Section 2.3. This ratio will indeed quantify the deviation of the dynamics with respect to equilibrium and will en-
able one to construct the estimators of Sections 3 and 4.

2.3. Reverse-to-forward probability ratio and discretization

The probability to generate the dynamics along a path z = [q(t)]06t6s given that the system is at (q(0),p(0)) at time t = 0 is
denoted .F(z), while the probability to generate the same path using the reverse dynamics starting from system (q(s),p(s)) at
time t = s down to t = 0 is denoted .R(z). Then, the reverse-to-forward probability ratio and the workWðzÞ done by the exter-
nal forces f ext

3I<j63IþJ upon the extended system are related by the following expression (Eq. (2) in [37])
qðpðsÞ;qðsÞÞ.RðzÞ
qðpð0Þ;qð0ÞÞ.FðzÞ

¼ exp �bWðzÞ½ �: ð8Þ
The identity above and the expression of the work will be derived explicitly for the discretized Langevin dynamics in this
subsection. Before, we point out that identity (8) is similar to the more well-known identity involving the reverse-to-forward
probability ratio due to Crooks [10], except that a difference of free energy between a target system and a reference system
appears in the latter form. No free energy difference appears here because the target and reference systems are the extended
system itself with the extended Hamiltonian. The thermodynamic implications involving the two mentioned identities are
compared in Ref. [37]. Besides, from a mathematical perspective, Eq. (8) can be interpreted as a generalized detailed balance
equation involving the forward and backward Kolmogorov operators associated to our Langevin dynamics (see Eq. (4.43) in
Ref. [24]). This interpretation allows both to define time reversibility rigorously and to extend the original derivations
[10,37], which considered discrete-time Markov processes, to general continuous-time Langevin dynamics such as the
one considered here.



7132 M. Athènes, M.-C. Marinica / Journal of Computational Physics 229 (2010) 7129–7146
Since in practical applications we have to discretize the dynamics, we are authorized to expand the reverse and forward
conditional probabilities, so as to include these quantities in the estimators directly. This is the approach that we follow in
the sequel. Let Dt denote the discretization time step and vn denote a state (q(tn), p(tn)) at time tn = nDt. The discretized tra-
jectory of a path z is characterized by the successive states (v0, . . . ,vn, . . . ,vN) obtained at times (t0, . . . , tn, . . . , tN) by propagat-
ing the Langevin dynamics forward starting from a given state v0. This is achieved by updating the following discretization
scheme [20,21,27–29] from time t0 to time tN (1 6 i 6 3I + J)
pi;kþ1=4 ¼ pi;ke�~ciDt=2 þ gþi;kþ1=4; ð9aÞ

pi;kþ1=2 ¼ pi;kþ1=4 þ ~f i;kDt=2; ð9bÞ
qi;kþ1 ¼ qi;k þ pi;kþ1=2Dt=mi; ð9cÞ

pi;kþ3=4 ¼ pi;kþ1=2 þ ~f i;kþ1Dt=2; ð9dÞ
pi;kþ1 ¼ pi;kþ3=4e�~ciDt=2 þ gþi;kþ3=4; ð9eÞ
where index k denotes time kDt while ~f i;k ¼ lifiðkDtÞ and ~ci ¼ lici (li = 1 if i 6 3I). Besides, the noises gþi;kþ1=2�1=4 in Eqs. (9a)
and (9e) are normal and have mean zero and variance ri ¼ ð1� e�~ciDtÞmi=b. Updates (9a) and (9e) correspond to the momen-
tum variations due to two consecutive Ornstein–Uhlenbeck processes of duration Dt

2 . These processes consist of propagating
the momentum pi using
_pi ¼ �~cipi þ biðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mi~ci=b

q
ð10Þ
from t = tn to tn + Dt/2 and from t = tn + Dt/2 to tn+1, where bi(t) is an uncorrelated white noise of unit amplitude.
Because the scheme corresponds to a double Strang–Trotter decomposition [21] with the position update in the center

and then half momentum updates with respect to the force and the stochastic processes, it is symmetric and can thus be
updated or downdated depending on whether the dynamics is considered to be forward or reverse. For the reverse dynamics,
we must iterate
pi;kþ3=4 ¼ pi;kþ1e�~ciDt=2 þ g�i;kþ3=4; ð11aÞ

pi;kþ1=2 ¼ pi;kþ3=4 � ~f i;kþ1Dt=2; ð11bÞ
qi;k ¼ qi;kþ1 � pi;kþ1=2Dt=mi; ð11cÞ

pi;kþ1=4 ¼ pi;kþ1=2 � ~f i;kDt=2; ð11dÞ
pi;k ¼ pi;kþ1=4e�~ciDt=2 þ g�i;kþ1=4; ð11eÞ
where the reverse noises g�i;kþ1=2�1=4 have the same variance. Besides, the time reversal of the Ornstein–Uhlenbeck process in
(11a) and (11e) is the process itself.

We then denote the probabilities of the discretized dynamics by Pcond(zjvN,N) and Pcond(zjv0,0). They will approximate
the quantities .R(z) and .F(z) in (24). As a result of the discretization, the forward path probability can be factorized into
the following product:
Pcondðzjv0;0Þ ¼
Y3IþJ

i¼1

YN�1

k¼0

Uri
gþi;kþ1=4

� �
Uri

gþi;kþ3=4

� �
; ð12Þ

¼
Y3IþJ

i¼1

YN�1

k¼0

A2
ri

exp � ð2mibÞ�1

1� e�~ciDt
gþi;kþ1=4

� �2
þ gþi;kþ3=4

� �2
� �( )

: ð13Þ
where Uri
stands for the normal probability of variance ri ¼ mið1� e�~ciDtÞ=b and Ari

denotes its normalizing factor. The nor-
mal laws Uri

are used to generate the stochastic noises gþi;kþ1=4 and gþi;kþ3=4 of the ith thermostat along trajectory z (0 6 k < N).
The conditional probability to generate z backward can be decomposed into a similar product of normal probabilities
¼
Y3IþJ

i¼1

YN�1

k¼0

Uri
g�i;kþ1=4

� �
Uri

g�i;kþ3=4

� �
; ð14Þ

¼
Y3IþJ

i¼1

YN�1

k¼0

A2
ri

exp � ð2mibÞ�1

1� e�~ciDt
g�i;kþ1=4

� �2
þ g�i;kþ3=4

� �2
� �( )

: ð15Þ
Let Qi,k denote the temperature-scaled logarithm of the reverse-to-forward probability ratio associated with the Ornstein–
Uhlenbeck processes for the ith thermostat at step k. We have
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Q i;k ¼ b�1 ln Uri
g�i;kþ1=4

� �
Uri

g�i;kþ3=4

� �h i
� ln Uri

gþi;kþ1=4

� �
Uri

gþi;kþ3=4

� �h in o
; ð16Þ

¼ ð2miÞ�1

1� e�~ciDt
gþi;kþ1=4

� �2
þ gþi;kþ3=4

� �2
� �

� g�i;kþ1=4

� �2
þ g�i;kþ3=4

� �2
� �� 	

; ð17Þ

¼ 1
2mi

p2
i;kþ1 � p2

i;kþ3=4 þ p2
i;kþ1=4 � p2

i;k

n o
; ð18Þ

¼ 1
2mi

p2
i;kþ1 � p2

i;k

h i
þ Dt2

8mi

~f 2
i;kþ1 � ~f 2

i;k

h i
� 1

2
qi;kþ1 � qi;k


 �
� ~f i;kþ1 þ ~f i;k

� �
: ð19Þ
The transformation from (17) to (18) involves expressing the noises as a function of the momenta after and before the Orn-
stein–Uhlenbeck processes and yields a form of detailed balance. In the transformation from (18) to (19), the intermediate
momenta pi,k+1/4 and pi,k+3/4 have been expressed as a function of the forces and positions at integer steps.

The effective work done along the path from t0 to tn ¼ n
N s defined by [20]
Wn ¼ �b�1 ln
qðvnÞPcondðzjvn;nÞ
qðv0ÞPcondðzjv0;0Þ

� �
¼ HðvnÞ � Hðv0Þ �

X3IþJ

i¼1

Xn�1

k¼0

Qi;k: ð20Þ
can be evaluated from the knowledge of the trajectory via the Qi,k’s. The effective works will be used to retrieve equilibrium
information in Section 4. Nevertheless, from a thermodynamical point of view, it is instructive to formulate the workWðzÞ in
the continuum limit, achieved here when N goes to infinity and with Dt = s/N. We thus define QiðzÞ as
QiðzÞ ¼ lim
N!þ1

XN�1

k¼0

Q i;k ð21Þ
with Dt = s/N and all states v(tk) inside the continuous path z when defining the limit. From the relation [20]
XN�1

k¼0

Q i;k ¼
1

2mi
p2

i;N � p2
i;0

h i
þ Dt2

8mi

~f 2
i;N � ~f 2

i;0

h i
� 1

2

XN�1

k¼0

ðqi;kþ1 � qi;kÞ � ð~f i;kþ1 þ ~f i;kÞ;
we deduce
QiðzÞ ¼
1

2mi
p2

i ðsÞ � p2
i ð0Þ

� 
�
Z s

0

dqi

dt
lifidt; ð22Þ
recalling that lifi ¼ ~f i. Neglecting the constant Ito term arising from the integration of pidpi, the quantity QiðzÞ can be inter-
preted as the work done along the trajectory z by the force
‘i ¼
dpi

dt
� lifi ¼ �~cipi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~cikBTmi

q
biðtÞ
that is exerted by the ith thermostat upon the ith coordinate ð~ci ¼ liciÞ. This quantity thus represents the heat exchanged
with the ith thermostat. We recover an additional result in the continuum limit : the total heat exchanged with the thermo-
stats during the forward dynamics, defined by
QðzÞ ¼
X3IþJ

i¼1

QiðzÞ; ð23Þ
relates to the ratio of the reverse-to-forward conditional probability via the well-known expression [10,11]
.RðzÞ

.FðzÞ
¼ exp½bQðzÞ�: ð24Þ
The heat also relates to the quantity WðzÞ defined in (8) via a conservation Eq. (25), obtained by inserting (24) into (8) and
then resorting to the relations qðp;qÞ ¼ exp½bðF �Hðp;qÞÞ� both at t = 0 and t = s. We have
QðzÞ ¼ HðpðsÞ;qðsÞÞ � Hðpð0Þ;qð0ÞÞ �WðzÞ: ð25Þ
Besides, resorting to fi ¼ �@qi
H in Eq. (22) and then summing yields an additional relation for the total heat exchanged with

the thermostats
QðzÞ ¼
X3IþJ

i¼1

1
2mi

p2
i ðsÞ � p2

i ð0Þ
� 

þ
Z s

0
rqH �

dq
dt
�
X3IþJ

i¼1

ð1� liÞ@qi
Hdqi

dt

" #
dt

¼ H½pðsÞ;qðsÞ� � H½pð0Þ;qð0Þ�f g �
X3IþJ

i¼3Iþ1

Z qiðsÞ

qið0Þ
ð1� liÞ@qi

HdqiðtÞ: ð26Þ
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Note that the last summation runs from 3I + 1 since li = 1 for 0 6 i 6 3I. Then, substracting (25) to (26) enables one to iden-
tify WðzÞ explicitly
WðzÞ ¼
X3IþJ

j¼3Iþ1

Z qjðsÞ

qjð0Þ
ð1� ljÞ@qj

HdqjðtÞ: ð27Þ
This quantity indeed corresponds to the work done by the external forces f ext
j ¼ ð1� ljÞ@qj

H upon the extended system, as
stated in [30].

The limiting case consisting of setting lj = 1 for all j > 3I cancels the work in Eq. (27) ½WðzÞ ¼ 0�. This in turn implies a
specific form of detailed balance q[v(s)].R(z) = q[v(0)].F(z) ensuring that the dynamics sample the equilibrium distribution
qðvÞ / exp½�bHðvÞ�. Aside from this limiting case, two particular schedules are possible for the steered dynamics depending
on the lj-values in Eq. (27), which we discuss below.

2.4. Autonomous versus non-autonomous steering

A first steering regime appears when the values of the scaling factors lj’s are set to zero for all j > 3I. The noise amplitude
and the friction ~cj ¼ ljcj vanish (see Eq. (7)). Any coordinate qj then evolves at a constant imposed velocity as in the schedule
established by Hummer and Szabo [7]. The forces are conservative and time-dependent with respect to the real particles
(once the additional variables have been eliminated by solving for them). The dynamics is said to be non-autonomous
[30] and we refer to this regime as non-autonomous steering. Non-autonomous dynamics with J = 1 guided by (time-depen-
dent) conservative forces are well suited for computing free-energy profiles in one dimension or differences of free energy.
Note that the fast switching schedule introduced by Jarzynski [8] amounts to non-autonomous scheduling with a single
external parameter k(t) � q3I+1(t) and l3I+1 = 0 in Eq. (27). Furthermore, the integral form in Eq. (27) with J = 1 corresponds
to Jarzynski’s definition of the work provided we consider the additional variable as a coupling parameter acting upon the
Hamiltonian of the particle subsystem.

The second steering regime consists of choosing 0 < lj < 1 for j > 3I. In this regime, the extended Langevin dynamics of
Section 2.2 is autonomous: the additional variables evolve stochastically by means of a force field {lifi}16i 63I+J that is
time-independent and non-conservative [30], i.e. that does not derive from a potential function except for particular condi-
tions on the forces and the lj’s. We refer to this regime as autonomous steering. As will be shown in Section 6, autonomous
steering is well adapted to the use of more than one additional variable.

In the second regime, the dynamics of the additional variables may be given to a different thermodynamic interpretation.
Indeed, the additional variables (7) also evolve according to the equation ( ~mj ¼ l�1

j mj, j > 3I)
€qj ¼ ~m�1
j fj � ~cj _qj þ bj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~m�1

j
~cjkTj

q
;

where Tj ¼ l�1
j T denotes the effective temperature of the thermostat that is actually coupled to qj and ~mj denotes an effec-

tive mass for the additional variable. This dynamics is a particular implementation of the general dynamics given in [31,
Eq. (3)]. Dynamics coupled to thermostats at different temperatures reach a nonequilibrium steady-state with no well-de-
fined temperature and satisfy a generalized detailed balance equation [32,33]. Fluctuation theorems as well as reverse-to-
forward probability ratios considered with respect to multi-temperature dynamics then relate to the heat transfers be-
tween the system and the various thermostats around the nonequilibrium steady state [32]. The rescaling of the forces
in the dynamics (Section 2.2) actually ensures that the reverse-to-forward path probability ratios relate to a transient
mechanical work rigorously defined with respect to the equilibrium distribution of interest, as in the steering protocol
of Hummer–Szabo. In particular, the work (27) depends on the potential energy of the extended Hamiltonian and not
on its kinetic energy.

Note that the stationary distribution reached by a multi-temperature dynamics exhibits a known analytical form
[15,16,12] when a separation of frequencies occurs between a slow variable qj subject to a thermostat at high temperature
Tj and the remaining fast variables at normal temperature T. From this analytical form, the equilibrium probability profile Peq

T

of qj at temperature T can be extracted from the established relation Peq
T ðqjÞ / ½P

stðqjÞ�
Tj=T where Pst(qj) is the stationary prob-

ability profile measured during a simulation. No separation of frequencies needs to be imposed in the approach of the pres-
ent paper where the rescaling factor Tj=T ¼ l�1

j acts upon the dynamics directly (7).
In order to retrieve equilibrium information from transient nonequilibrium dynamics, Jarzynski derived its remarkable

identity that involves the exponential average of the work (refer to [8,34–38] for original and review papers on fluctuation
theorems). We now briefly review the computational extensions that have been made to this approach for non-autonomous
steering with a single additional variable.

3. Two-state estimators for non-autonomous steering

We assume here that trajectories are generated using a single steering variable k and with non-autonomous scheduling
(l3I+1 = 0). The phase space of non-autonomous paths is defined as follows:
Xna ¼ fz such that 8n; q3Iþ1ðtnÞ ¼ kng:
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A simple estimator associated to a biased sampler can give access to the ratio of normalizing constants related to the two
thermodynamic states defined by k0 and kN [19–22,39,23]. This ratio can indeed be cast in the following form:
R

d½q3Iþ1 � kN�qðvÞdvR
d½q3Iþ1 � k0�qðvÞdv

¼
R

Xna
PcondðzjvN ;NÞqðvNÞDzR

Xna
Pcondðzjv0; 0Þqðv0ÞDz

; ð28Þ

¼
R

Xna
P condðzjvN ;NÞqðvNÞ=Pu

B ðzÞ
� 

Pu
B ðzÞDzR

Xna
Pcondðzjv0;0Þqðv0Þ=Pu

B ðzÞ
� 

Pu
B ðzÞDz

: ð29Þ
The first transformation (28) merely exploits the normalization of conditional probabilities with respect to path space Xna.
The second transformation (29) formally inserts the biased probability distribution Pu with respect to which sampling is per-
formed. Note that Jarzynski’s identity is recovered by replacing Pu

B ðzÞ with Pcond(zjv0,0)q0(v0) where q0(v) denotes the equi-
librium distribution conditioned on q3I+1 = k0. In applications [20–22,39] of identity (29), the biasing potential u is a function
of the work function WðzÞ ¼ �b�1 lnf½Pðz j vN;NÞqðvNÞ�=½Pðz j v0;0Þqðv0Þ�g. In practice, the residence weight algorithm [18]
was observed to achieve good performance [19,23] (see Appendix A).

The purpose of the paper is to extend the residence weight algorithm so that its sampler and associated estimator can
handle the multiple thermodynamic states that can be defined owing to the extended system, irrespective of whether the
scheduling of the steered dynamics is non-autonomous or autonomous.

4. Multi-state estimator

Residence weight algorithms can be formulated from two opposite points of view [23]. Here, we first build both the
sampler and the estimator of the algorithm upon Bayes theorem by adopting the viewpoint of statistical inference. Then,
we reinterpret the estimator as a conditional expectation (second viewpoint) in order to show the connection with the
waste-recycling algorithm.

4.1. Posterior likelihood viewpoint

Here, a marginal probability will be the importance function with respect to which path sampling is achieved, while a
posterior likelihood function will be used on-the-fly to infer the equilibrium contribution of each generated state within
the estimator. The marginal probability is defined in the path ensemble as the a priori probability of witnessing a path z un-
der all possible hypotheses, i.e. as the sum of the product of all probabilities of hypotheses Pu and corresponding conditional
probabilities Pcond:
Pu
MðzÞ ¼

XN

n¼0

P condðzjvn;nÞ � P
uðvn; nÞ: ð30Þ
An hypothesis (vn,n) is the knowledge of a state belonging to the path and of its index. The conditional probabilities in Eq.
(30) are given by Dellago et al. [41], Adjanor et al. [27], Stoltz [42]
Pcondðzjvn;nÞ ¼
Y3IþJ

i¼1

YN�1

k¼n

Uri
gþi;kþ1=4

� �
Uri

gþi;kþ3=4

� � Y0

k¼n�1

Uri
g�i;kþ1=4

� �
Uri

g�i;kþ3=4

� �
; ð31Þ
where the normal distribution Uri
are detailed in Section 2.3. Here, Pcond(zjvn,n) is the probability to generate the states vn+1,

vn+2, . . . ,vN starting from any vn by updating Eqs. (9a)–(9e) and then to generate the states vn�1,vn�2, . . . ,v0 starting from vn

by downdating Eqs. (11a)–(11d) and (11e). The two particular cases Pcond(zjv0,0) � qF(z) and Pcond(zjvN,N) � qR(z) were con-
sidered previously in biased path sampling schemes [20–22,39,23] to denote the probability to generate the forward and
reverse trajectories, respectively.

Additionally, the prior probability of hypothesis (v,n) in Eq. (30) is
Puðv;nÞ ¼
quðvÞhvðnÞ for non-autonomous scheduling;
quðvÞ 1

Nþ1 for autonomous scheduling:

(

For non-autonomous scheduling, hv denotes the prior probability of index n and is such that hv(n) = 1 if v pertains to the
sliced phase space xn = {(p,q)jq3I+1 = kn} that corresponds to index n, otherwise hv(n) = 0. Whatever v, we also assume that
hv(n)hv(m) = 0 for n – m and

PNþ1
n¼0 hvðnÞ ¼ 1: the steering amplitude captures once all important regions of phase space.

With autonomous scheduling, hv reduces to 1
Nþ1 whatever v, involving the independence of the slice index from v. Besides,

qu denotes a biased prior distribution of states
quðvÞ ¼ 1

hII!
exp bFu �uðvÞ � bHðvÞ½ �; ð32Þ
where the biasing potential v? u(v) is here a state function (rather than a work function as in previous implementations)
and the normalizing constant Fu is the u-dependent free energy. Irrespective of the scheduling, we have the useful equality
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quðvÞ ¼
XN

n¼0

Z
x

dðv� vnÞP
uðvn;nÞdvn; ð33Þ
where x denotes the unrestricted phase space (we previously assumed x ¼ [Nþ1
n¼0 xn for non-autonomous scheduling). This

equality will enable us to express the biased density qu as a path integral of marginal and posterior probabilities, irrespective
of whether the scheduling is autonomous or non-autonomous. For this purpose, we introduce X(vn,n) to denote the subspace
of all paths going through vn (at slice index n) and exploit the property that the sum over the path probabilities conditioned
on vn is normalized to one in X(vn,n)
quðvÞ ¼
XN

n¼0

Z
x

Z
Xðvn ;nÞ

Pcondðzjvn; nÞDz

" #
dðv� vnÞP

uðvn;nÞdvn;

¼
XN

n¼0

Z
X

dðv� vnÞP condðzjvn;nÞP
uðvn;nÞDz; ð34Þ

¼
Z

X

XN

n¼0

dðv� vnÞPselðvn;njzÞ
" #

Pu
MðzÞDz; ð35Þ
where
R
x

R
Xðvn ;nÞ

Dz
h i

dvn simplifies to
R

XDz in Eq. (34), with integration running over the space of either autonomous or non-

autonomous paths (X = Xa or Xna). After permuting summation and integration in Eq. (34), we introduced in Eq. (35) the
posterior likelihood Psel(vn,njz) by resorting to Bayes relation
Pselðvn;njzÞ ¼
Pcondðzjvn;nÞP

uðvn;nÞ
Pu

MðzÞ
: ð36Þ
The posterior probabilities can be evaluated and simulated like the conditional probabilities. Indeed, plugging the various
reverse-to-forward probability ratios given by
Pcondðzjv0;0ÞP
uðv0;0Þ

Pcondðzjvn;nÞP
uðvn; nÞ

¼ exp½uðv0Þ �uðvnÞ � bWn� ð37Þ
into (36), yields the evaluable ratio
Pselðvn;njzÞ ¼
exp½u0 �un � bWn�PN
k¼0 exp½u0 �uk � bWk�

; ð38Þ
where Wn is given in (20) and uk stands for u(vk) for simplifying.
The aforementioned feature of the posterior and conditional probabilities makes it possible to generate a path distribu-

tion according to the marginal probability Pu
MðzÞ. To explain how this can be done, let us consider a Monte Carlo move from

vn to v0n and whose associated transition probability Ptransðv0njvnÞ obeys a detailed balance with respect to Pu given by (39)
Ptrans v0njvn


 �
Puðvn;nÞ ¼ Ptrans vnjv0n


 �
Pu v0n;n

 �

: ð39Þ
Then, considering a path z0 containing v0n;n

 �

and plugging Bayes relation (36) into (39) for paths z and z0 implies the detailed
balance condition
Pcondðz0jv0n;nÞPtrans v0njvn


 �
Pselðvn;njzÞ Pu

MðzÞ ¼ Pcondðzjvn;nÞP trans vnjv0n

 �

P sel v0n;njz0

 �

Pu
M z0ð Þ ð40Þ
in which Pcond z0jv0n;n

 �

Ptrans v0njvn


 �
Pselðvn;njzÞ and Pcondðzjvn;nÞPtrans vnjv0n


 �
P sel v0n;njz0


 �
have to be read as the probabilities to

transit from path z to z0 and from z
0
to z, respectively. The path distribution generated by any sampler satisfying the detailed

balance condition (40) is ensured to converge toward the probability distribution Pu
M.

Still, the canonical average (4) of quantity A(r) must be extended in order to be evaluable from a sample of paths distrib-
uted according to Pu

M. To achieve this task, we first write the canonical average with respect to the biased probability mea-
sure. From the relation
qðvÞ
quðvÞ ¼ exp b F � Fuð Þ þuðvÞ½ �;
we obtain
hAi ¼
Z

x
AðrÞ qðvÞ

quðvÞq
uðvÞ dv

� �� Z
x

qðvÞ
quðvÞq

uðvÞdv
� �

¼
Z

x
AðrÞeuðvÞquðvÞdv

� �� Z
x

euðvÞquðvÞdv
� �

: ð41Þ
Then, the path-integral expression of qu (Eq. (35)) is inserted into the biased average (Eq. (41)) and the Dirac functions are
evaluated when integrating v over x, which yields
hAi ¼
Z

X

XN

n¼0

AðrnÞeuðvnÞPselðvn; njzÞ
" #

Pu
MðzÞDz

" #, Z
X

XN

n¼0

euðvnÞPselðvn;njzÞ
" #

Pu
MðzÞDz

" #
: ð42Þ
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We are now in the position of evaluating the canonical ensemble average (42) by following the traditional recipe [43] : (i) we
construct a Markov Chain distributed according to the probability density Pu

M and (ii) resort to the appropriate estimator to
correct for the bias introduced by the importance function Pu

M.

(i) Repeat M times the following steps :

(a) move to the shooting index n and state vn of current path z which have been selected both with posterior likeli-

hood Psel(vn,njz) in the previous steps (d) and (e);
(b) generate the new shooting state v0n from vn from probability Ptrans v0njvn


 �
;

(c) set C0 to 1, initialize the (provisional) next shooting index nprov to n and store v0n into vprov;
(d) shoot a new trajectory from state v0n and index n (perform N � n updates from v0n;n


 �
followed by n downdates

from v0n;n

 �

again); concomitantly, at each Langevin iteration k, compute Ch ¼ Ch�1 þ exp b W 0
n �W 0

aðhÞ

� �
�

h
u0aðhÞ� where index h = a�1(k) runs from 1 to N after re indexing using a; with probability 1 � Ch�1/Ch, change nprov

to a(h) = k and store v0aðhÞ into vprov, otherwise leave nprov and vprov unchanged;
(e) set the next shooting index n0 to nprov and store vprov into v0n0 to denote the selected state of the new completed

path z0;
(f) go to (a) until the chain has been completed.
(ii) Evaluate the estimator
bAM ¼

PM
m¼1

PN

n¼0
Anjm exp �bWnjmð ÞPN

n¼0
exp �unjm�bWnjmð ÞPM

m¼1

PN

n¼0
exp �bWnjmð ÞPN

n¼0
exp �unjm�bWnjmð Þ

; ð43Þ
where {z1, . . . ,zm, . . . ,zM} denotes the paths of the Markov chain constructed using the sampler and the simplified notations
Anjm, unjm stand for A(rn), u(rn) of path zm. Wnjm represents the work done upon the extended system along the trajectory zm

between v0 and vn (i.e. from times t0 to tn) via the mechanical coupling.

The reindexing function is
aðhÞ ¼
hþ n if h 6 N � n;

N � h if h > N � n;

�
a�1ðkÞ ¼

k� n if k P n;

N � k if k < n:

�

Some details of the algorithm above such as the move from vn to v0n in step (i)–(b) depends on the specific implementation:
we choose Ptransðv0n j vnÞ ¼ dðv0n � vnÞ in Section 5 implying that vn is left unchanged; in Section 6, v0n is constructed from vn

by drawing new momenta p0n from the Maxwell–Boltzmann distribution. Besides, the estimator (43) is obtained by plugging
(38) into the usual Metropolis estimator
bAM ¼
PM

m¼1

PN
n¼0Anjmeunjm Pselðvnjm;njmjzmÞPM

m¼1

PN
n¼0eunjm P selðvnjm;njmjzmÞ

; ð44Þ
related to ensemble average (42). Additionally, the shooting move [41] of step (i–d) generates the new path z0 with proba-
bility Pcondðz0 jv0n;nÞ given in Eq. (31) by construction. The next shooting state v0n0 and next shooting index n0 obtained from
vprov and nprov are eventually selected with the compound probability (0 6 h0 6 N)
Ymaxð0;h0�1Þ

h¼0

Ch�1

Ch
þ 1� Ch�1

Ch

� �� �( )
1� Ch0�1

Ch0

� � YN

h¼h0þ1

Ch�1

Ch

( )
¼ Ch0 � Ch0�1

CN
where C�1 = 0 and h0 = a�1(n0). This compound probability is equal to (n0 = a(h0))
Ch0 � Ch0�1

CN
¼

exp �u0n0 � bW 0
n0

� PN
k¼0 exp �u0k � bW 0

k

�  ¼ P sel v0n0 ;n
0jz0


 �
:

As a result, the algorithm satisfies the detailed balance Eq. (40). Note that the decomposition of the selecting procedure in (c–
e) of (i) avoids storing all the configurations when a new path is constructed.

4.2. Conditional expectation viewpoint

In the residence weight algorithm, the shooting index n0 related to path z0 subsequent to z is constructed concomitantly
with z0 as outlined by steps (i)–(c) to (i)–(e) of Section 4.1. As a result, the algorithm satisfies the following detailed balance
condition
P sel v0n0 ;n
0jz0


 �
Pcondðz0jv0n; nÞP

u v0n;n

 �

¼ P sel v0n;njz0

 �

P cond z0jv0n0 ;n0

 �

Pu v0n0 ;n
0
 �

ð45Þ
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for moves between v0n; n

 �

and v0n0 ;n0

 �

, and also obeys detailed balance Eq. (39) for moves between (vn,n) and v0n;n

 �

. The
algorithm thus leaves invariant the prior probability density Pu : the Markov chain of states (vn,n) constructed with the RW
algorithm is thus distributed according to the probability density Pu.

It follows from this theoretical description that the residence weight algorithm is a particular implementation of the
waste recycling algorithm introduced by Frenkel [25] and further studied in [23]. Indeed, assuming there is no biasing po-
tential in Eq. (44), one can subsequently normalize the selection probabilities to one (M times) and write
bAM ¼
1
M

XM

m¼1

XN

n¼0

AnjmPselðvnjm; njmjzmÞ; ð46Þ
which corresponds to the waste-recycling estimator given in Eq. (2.2) of Ref. [25]. Our symmetric selection procedure Psel

corresponds to a Barker acceptance rule ([25, Eq. (2.1)]) that considers states linked by the trajectories, while the wasted
information included in the rejected Monte Carlo moves is recycled in the estimator of Eq. (46).

Interestingly, Delmas and Jourdain [44] showed that the estimator can be interpreted as the conditional expectation of A
with respect to Psel and that it behaves normally asymptotically. Additionally, these authors proved that the statistical var-
iance of the estimator is smaller than the one of the Metropolis–Hasting estimator when the acceptance rule is symmetric
[44], as in the present situation. The first property implies that the conditional estimator is unbiased whatever the sample
size M, at variance with maximum-likelihood estimators that are only unbiased in the limit of large samples [4]. The last
property involving the variance reduction justifies the present strategy : when possible, one should systematically include
the information contained in the states of the paths in statistical path-averages.

We now turn to the applications of our method. In Section 5, we implement non-autonomous steering along a one-
dimensional order parameter with no biasing potential (u = 0) and will resort to Eq. (46) to reconstruct the free energy pro-
file. Then, in Section 6, the method will be tested on a more difficult benchmark model involving the direct reconstruction of
a two-dimensional free-energy landscape. This task will be achieved by resorting to autonomous steering with respect to
two additional collective variables. In addition, the biasing potential u will be constructed iteratively.
5. 1D free-energy reconstruction using non-autonomous steering

The one-dimensional reconstruction problem involves calculating the migration free-energy of the vacancy in the a-Fe
system. Atomic interactions of the model system are described by the (embedded atom method) potentials developed by
Ackland et al. [45] and are computed using the minimum image convention. The crystal structure is body-centered cubic
and the initial unrelaxed cell contains 1023 atoms displayed on 1024 lattice sites : the vacant site (vacancy) is at a corner
of the cell. Let r1 = (q1,q2,q3) denote a nearest neighbour atom of the vacancy along a [111] direction and define the one-
dimensional collective variable dist(r1) as the distance between r1 and the system’s center of mass Rm. A single additional
variable q3I+1 is associated to dist(r1) via the potential energy j

2 ðq3Iþ1 � distðr1ÞÞ2. The time-step is Dt = 4 � 10�15s and the
friction of the Langevin dynamics is ci = 2.5 � 1012s�1 whatever i.

Furthermore, protective spheres have been added upon the 7 nearest atoms of atom r1 and upon the 7 nearest atoms of
the vacancy (r1 being obviously unprotected). Each sphere is centred on the corresponding site of the underlying rigid lattice
and is of radius a/2 (where a = 2.4728 � 10�10 m is the nearest neighbour distance). Displacements moving a neighbouring
atom out of its protective sphere are discarded, which can be done because the dynamics have been metropolized (see
Appendix B). The exit frequency of neighbouring atoms remains negligible even at high temperature. This procedure pre-
vents spontaneous vacancy atom exchanges that may occur at temperatures above 540 K by the nonequilibrium steering
without altering the statistics.

The reaction coordinate n(r) is the projection of vector r1 � Rm along [111] direction. Measuring the quantity of interest,
P(n), via a histogram amounts to monitoring the occupation probability of atom r1 along [111] direction. We implement
non-autonomous steering with its additional variable (nadd = q3I+1) evolving at constant velocity according to
q3Iþ1ðtnÞ ¼ q3Iþ1ð0Þ þ
tn

s
½q3Iþ1ðtNÞ � q3Iþ1ð0Þ�: ð47Þ
The values q3Iþ1ð0Þ ¼ � a
10 and q3Iþ1ðsÞ ¼ 11a

10 in the steering schedule have been chosen such that the atom r1 performs a single
jump into the vacant site. The phase space is thus restricted to 2 possible vacancy sites. Time is given by tn = nDt. As noticed
in related studies [46,47] implementing Jarzynski’s work identity, we found it advantageous to use few long nonequilibrium
trajectories rather than many short ones. Hence, for each temperature, we have generated M = 100 hybrid trajectories with
N = 105 time-steps (implying a total of 107 force evaluations per simulation). From the 100 trajectories, we calculated the
histograms bP100ðnÞ with n spanning the interval � a

10 ;
11a
10

� 
in 121 bins. Temperature ranges from 20 K to 1000 K.

Fig. 1 displays various outputs of the simulation carried out at T = 540 K. Panel (a) displays the reaction coordinates n of
the states successively selected by Psel (Eq. (37)). The high crossing probability discussed in the figure caption is related to the
small value of the work performed on the system once the system has transited over the barrier at the present low-velocity
steering. To illustrate the unavoidable lag effect caused by steering, let us consider the cologarithm of a bP1ðnÞ estimate (i.e. of
an estimate obtained from a single trajectory). The variation of �b�1 ln bP1ðnÞ with respect to n is related to the work done
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along the trajectory. We have represented in panel (b) the cologarithm of several bP1ðnÞ estimates for forward or backward
trajectories. The asymmetry of the colog-probability profiles is controlled by the steering direction and the amount of dis-
sipation. The asymmetry is removed because the estimator combines trajectories generated forward and backward along n,
i.e. starting from both free energy minima. The cologarithm of the bP100ðnÞ histogram, represented in panel (b) by the thick
symmetric curve, illustrates this feature. A similar compensation has been observed previously [48] with a bidirectional var-
iant of the Hummer–Szabo method. In panel (c), we have plotted the divergence defined by
DðnÞ ¼ ln PðnÞ � ln bP1ðnÞ; ð48Þ
where P(n) is estimated here using bP100ðnÞ and the overbar denotes averaging the 100 available ln bP1ðnÞ values. Mathemat-
ically, the divergence D(n) is a relative entropy betwen two distributions [49]. Thermodynamically, it is an excess entropy
that is stored into the system and that would be irreversibly dissipated toward the thermostat if the system was allowed
to relax back to equilibrium at constant n. This quantity gives information on the convergence of exponential averages
[20,49]. The smaller the divergence is and the more accurate the estimation is. We observe from Fig. 1 that accuracy is smal-
ler at the edges of the barrier, where the gradient of the steering potential is larger. Besides, D(n) decreases again to a min-
imum around n = 1.6 � 10�10 m that corresponds to the intermediate free energy minimum of panel (b). This trend suggests
that the excess energy transiently stored in the steering potential is not entirely dissipated but is released to the extended
system when n reaches the intermediate energy minimum.

The method was found to yield reproducible F(n,T)-estimates down to the temperature of 20 K. Two series of simulations
were carried out. From 20 K to 250 K, we used j = 10 � 104 J m�2 (IR1) and from 200 K to 1000 K we used j = 5 � 104 J m�2

(IR2). Results are represented by the free energy landscape of Fig. 2. We observe that the intermediate free-energy minimum
is more pronounced at the lower temperatures and completely disappears at temperatures higher than 700 K. The migration
free energies are deduced from the relative barrier heights along n-axis of Fig. 2. They are plotted as a function of temper-
ature in Fig. 3 together with the prediction of classical harmonic approximation (CHA). CHA calculations have been per-
formed using the procedure described in Refs. [27,50] and considering one of the two symmetric energy minima and
saddle configurations. As expected, Monte Carlo simulations and CHA calculations agree at low temperatures (T < 200 K)
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where anharmonic effects are negligible, confirming the exactness of our simulation method. At temperatures higher than
200 K, we observe a substantial deviation between simulation and CHA, attesting to strong an anharmonicity. Note that the
extent of anharmonicity is in quantitative agreement with the one previously reported in the literature [51] for the vacancy
migration free energy.

In our first application, a single collective variable was used and simulations were performed successively with varying
the temperatures so as to complete the landscape. In the second application, we show how to achieve two-dimensional
reconstruction directly by resorting to autonomous steering with two additional variables.
6. 2D free-energy reconstruction using autonomous steering

We consider the 38-atom Lennard-Jones cluster. LJ38 is computationally troublesome to study because its potential en-
ergy landscape has two main funnels [52–54], whose respective lowest energy structures are the icosahedron and the octa-
hedron displayed in Fig. 4. It undergoes a two-stage phase change with increasing temperature starting from the octahedral
structure. A solid–solid transition temperature between the octahedral funnel and the icosahedral funnel occurs near
Tss � 0.12�/kB, melting follows near Tls � 0.17�/kB. LJ reduced units of length, energy and mass (r = 1, �/kB = 1, m = 1) will
be used in the following.



Fig. 4. The two lowest energy structures of the 38-atom cluster: (a) truncated octahedron with energy E0 = �173.9284 and (b) incomplete icosahedron,
E1 = �173.2524.
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Fig. 5. Free energy F(Q4,E) as a function of Q4 and E. Left panel is the actual measurement at T = 0.19, while the right panel represents the free energy
reconstruction for temperature T = 0.05 as obtained by Legendre transform.
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As first collective variable, we use the bond-orientational order parameter Q4 of Steinhardt et al. [55] that is able to dis-
tinguish between the cubic structures favoured at low temperatures and the icosahedral isomers above Tss. The second col-
lective variable, is the potential energy E(r). The associated additional variables, q3I+1 and q3I+2, act upon the particles via
harmonic potentials whose stiffnesses are j1 = 104 and j2 = 2, respectively. Their respective masses are m3I+1 = 6400 and
m3I+2 = 0.8. The respective coupling parameters are l3I+1 = 0.9 and l3I+2 = 0.995, and the frictions are ci = 5 � 103 (i 6 3I)
and cj = 5 � 10�3 (j > 3I). They have been chosen using the simple recipe that follows (j > 3I): (i) the lj’s are tuned to enable
the additional variables qj to oscillate with an amplitude large enough in the direction of the corresponding order parameter;
(ii) the masses mj are then tuned to set the velocity slow enough (but not too slow) and (iii) the coupling parameter cj is
chosen small enough to ensure a smooth and regular evolution of the qj’s. Procedures (ii) and (iii) prevent the dynamics from
producing entropy, i.e. from dissipating the work done on the system into heat when the qj’s evolve too fast. The values given
above were found satisfactory and are certainly sub-optimal. Finding the optimal computational set-up is a non trivial task.

A series of iterative simulations have been carried out at the temperature T = 0.19, using the procedure introduced by Col-
uzza and Frenkel [59] in a similar context. Let P‘(Q4,E) denote the histogram constructed by the ‘th simulation. The biasing
potential u‘+1 of the next simulation is then constructed using the iterative procedure
u‘þ1 ¼ /‘þ1 	 nadd /‘þ1ðQ 4; EÞ ¼ � ln bP‘ðQ 4; EÞ þ p‘min

� �
: ð49Þ
The p‘min parameter determines the maximum value of the biasing potential and thus avoids possible singularities arising
from unexplored histogram bins. As the successive simulations explore larger portions of the phase space more and more
accurately, the control parameter is decreased iteratively using the relation p‘min ¼ 10�9�4‘. Each simulation generates
approximately M = 105 trajectories of N = 2.5 � 105 time-steps.
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Panel (a) of Fig. 5 represents the final FT0 ðE;Q4Þ contour plot obtained at the temperature of the simulation T0 = 0.19. The
color scale is such that the improbable regions of the landscape are displayed in black. The free energy at any temperature T1

is related to the microcanonical density of states g(Q4,E) via the relation [56]
Fig. 6.
(WL). (
FT1 ðQ 4; EÞ
kBT1

¼ E
kBT1

� ln gðQ 4; EÞ þ ln
Z

gðQ 4; EÞ exp � E
kBT1

� �
dE: ð50Þ
Since this relation is also valid for the reference temperature T0, it gives access to the difference of Landau free energies be-
tween any target temperature T1 and the reference temperature T0 of the simulation
FT1 ðQ 4; EÞ
kBT1

¼ E
kBT1

� E� FT0 ðQ 4; EÞ
kBT0

þ ln
Z

exp
E� FT0ðQ 4; EÞ

kBT0
� E

kBT1

� �
dE: ð51Þ
The integral over energy in (51) acts as a normalizing factor and is the partition-function ratio involving the reference (T0)
and target (T1) systems. The free energy landscape at temperature T1 = 0.05 is finally displayed in panel (b) of Fig. 5 and re-
veals the low energy structures previously reported in Ref. [27]. To make a quantitative comparison between the present
method [information retrieval with autonomous-steering, (IR)] and the three simulation methods used in Ref. [27] [nonequi-
librium path-sampling (PS), parallel-tempering (PT) and Wang–Landau (WL)], we plot in Fig. 6 all the estimated free energy
profiles, F(Q4,T) as a function of Q4, for temperatures T = 0.15, 0.12 and 0.05.

For the present method and the Wang–Landau method [27], we used the standard relation
FðQ 4; TÞ ¼ �kBT ln
Z

exp
�FTðQ 4; EÞ

kBT

� �
dE ð52Þ
to obtain the free energy profile. In the reported path-sampling simulations, the temperature along the trajectories were
slowly cooled down starting from T = 0.19, which, using the present terminology, amounts to non-autonomous steering with
respect to temperature. However, in contrast with the present study, the estimator that was implemented was based on
 0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0
 3.5

F(
Q

4,
T)

a T=0.15 PT
PS
WL
IR

 0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0

F(
Q

4,
T)

b T=0.12

 0.0
 0.5
 1.0
 1.5
 2.0
 2.5
 3.0

 0.00  0.04  0.08  0.12  0.16  0.20

F(
Q

4,
T)

Q4

c T=0.05

Free energy profiles of LJ38 as a function of Q4 obtained with information-retrieval (IR), path-sampling (PS), parallel tempering (PT), Wang–Landau
a) T = 0.15 ; (b) T = 0.12; and (c) T = 0.05.



 0
 0.5
 1
 1.5
 2
 2.5
 3

 0  0.1  0.2  0.3  0.4  0.5  0.6

 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18
 0.2
 0.22

 0
 1
 2
 3

F(
Q

6,
T)

F(Q6,T)

L

I
D

O

Q6

T

F(
Q

6,
T)

Fig. 7. Free energy F(Q6,T) as a function of Q6 and T. The dotted line at T = 017 represents the phase transition between the liquid-like structure and the
icosahedral structure (I). The one at T = 0.12 shows the transition between the icosahedral structure and the octahedral structure (O). The label D represents
defected structures near Q6 = 0.25 (or Q4 = 0.08).

M. Athènes, M.-C. Marinica / Journal of Computational Physics 229 (2010) 7129–7146 7143
Crook’s nonequilibrium average and could only exploit the information from the time-slice of the corresponding
temperature.

We observe that, at the temperature T = 0.15, the lowest that could be simulated correctly using standard umbrella sam-
pling and histogram reweighting [52], our IR estimates for the free energies are in excellent agreement with the PS, PT and
WL estimates [27]. However, at lower temperatures, we observe a disagreement for low free-energy structures in the range
0.02 6 Q4 6 0.07, in particular for the one appearing around Q4 � 0.03, compared to estimates obtained using the three other
methods (PS, PT and WL). This limitation of the method is concommitant to the slow convergence of the two-dimensional
biasing potential /a in this region of phase space. We did not perform another iteration as the total number of force evalu-
ations was already 1011, i.e. equal to the one in the corresponding PS simulations [27].

Nevertheless, at temperature T = 0.05 [Fig. 6, panel (c)], the estimates (IR) of F(Q4,T) revealed numerous low energy struc-
tures in the range 0.07 6 Q4 6 0.12, which are explored with path-sampling, but missed with parallel tempering and Wang–
Landau sampling. In particular, the low energy structure at Q4 = 0.12 is correctly predicted. Interestingly, the basins of attrac-
tion of these minima are larger with IR than with PS. This is due to the enhanced statistics made possible by the multi-state
estimator that exploits information from all time-slices at any temperature, unlike the PS estimator.

Finally, we plot the two-dimensional free-energy landcape F(Q6,T) as a function of Q6 and T obtained from the simulation
using a multi-state estimator in Fig. 7. The Q6 order parameter is used because it better distinguishes the liquid phase L and
the icosahedral phase I, as seen from this figure. Results are in qualitative agreement with previous simulation (PS) except for
the defected structures D around Q6 � 0.24 whose free energy is overestimated.

To conclude this test study on LJ38 system, the reconstruction of a two-dimensional free-energy was achieved owing to
the iterative construction of the two-dimensional biasing potential / with autonomous steering. In term of numerical effi-
ciency, the approach was found advantageous because its estimator retrieves the information contained in all the time-slices
of the generated trajectories, unlike the nonequilibrium average previously implemented with non-autonomous steering
[27]. Further comparing the numerical efficiency of the methods from Ref. [27] and the present one is difficult, as estimators
and steering schedules of distinct types were used. The non-autonomous steering schedule of Ref. [27] should be tested with
the more efficient multi-state estimator proposed in this study. In addition, given that the reported Wang–Landau sampling
simulations achieved greater performance in the range 0.04 6 Q4 6 0.08 but smaller performance in the range
0.08 6 Q4 6 0.14, it may be worth implementing the multi-state estimator described in the present paper in combination
with adaptive sampling methods such as Wang–Landau sampling [57,58] or metadynamics [17] so as to check whether
the construction of the biasing potential would be facilitated.
7. Concluding remarks

In this article, we developed a unifying framework and a simple algorithm for retrieving the equilibrium information con-
tained in all the time-slices from a sample of nonequilibrium trajectories. The algorithm, which shares several features with
maximum-likelihood methods for nonequilibrium dynamics, is built upon Bayes theorem : a sampler generates a Markov
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chain of linked trajectories distributed according to a marginal probability, while an estimator operates over the Markov
chain so as to infer the contribution to equilibrium of the sampled data using a likelihood function. Contrary to maxi-
mum-likelihood estimators, the proposed estimator does not involve post-processing, can possibly be implemented with
dynamics based on either non-autonomous or autonomous scheduling and is unbiased but not optimal.

Concerning the overall efficiency of the method, we observe that, in agreement with theoretical prediction [40] and max-
imum-likelihood simulations [48], the most accurate estimations of free energies are obtained when trajectories can be ini-
tiated from the various regions of interest. This computational requirement can be fulfilled by tuning an auxiliary biasing
potential so as to flaten the prior probability distribution along the desired reaction coordinate. Using autonomous steering
dynamics and resorting to a simple iterative procedure for constructing a two-dimensional biasing potential, the multi-state
estimator could indeed reconstruct the free-energy landscape of the troublesome LJ38 system quite accurately.

The presented simulations clearly outlined the advantages of steering autonomously rather than non-autonomously: the
former strategy can be implemented in complex systems that require more than one steering variable and enables one to
reconstruct multi-dimensional free energy landscapes directly. This feature in fact extends the possibilities of the Hum-
mer–Szabo methodology [7].

Eventually, the multi-state estimator should be implemented with an adaptive sampler [60,61] to check whether the
combination of both techniques facilitates or not the construction of the biasing potential, compared to simulations resorting
to one of the two techniques exclusively. This issue is to be considered in the wider perspective of waste-recycling [62,44],
which similarly advocates to retrieve all the information generated during the simulations within on-line statistical aver-
ages. A recent numerical investigation [63] shows that a significant reduction of the statistical variances can be achieved
in replica-exchange simulations that implement a multi-state estimator and a multi-proposal sampler [64] similar to the
ones used in the present study.
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Appendix A. Residence algorithms and optimized path-sampling

In other implementations of the residence weight algorithm, the biasing function / was a work quantity rather than an
auxiliary potential as in the present study. The equivalent form of our detailed balance Eq. (40) corresponds to the detailed
balance condition [23, Eq. (61)] which itself formalizes the weighted balance condition given in earlier works (refer to [18,
Eq. (5)] and [19, Eq. (21)]). The weighted balance equation was induced by analogy with the residence time algorithm. The
latter algorithm [65,66] and its extensions [67–69] are used extensively in kinetic Monte Carlo simulations and also achieve
importance sampling in ensembles of linked trajectories (more precisely, of kinetic pathways), owing to a similar selecting
procedure. The selecting probability satisfies a detailed balance condition weighted by residence times (mean first passage
times of exit). Eventually, the residence time algorithm also involves information retrieval [26,20,21,23]. The kinetic path-
ways that can possibly be constructed from the master equation and that are eventually discarded by the algorithm [70]
do contribute to the residence times. These analogies are more obvious for the residence weight algorithms used in Ref.
[18–21,23], which unlike the present case, generate and select trajectories pertaining to ramified paths called webs [71].

The relatively high numerical efficiency of these related algorithms for estimating differences of free energies can be qual-
itatively explained by the study of Oberhofer and Dellago [40]. Assuming that the biasing potential is an adjustable func-
tional depending on the work WðzÞ, these authors derived the optimal work dependent bias that leads to minimal
statistical variance. The statistical variance was found to be minimal when the work-bias distribution contains typical for-
ward and typical backward trajectories with similar weights, which is precisely an essential feature of the residence weight
algorithms previously proposed. These algorithms generated paths using alternately the forward and reverse distribution in
the extended ensemble of trajectories.

In the present study, the biasing potential u = /	 n is state dependent. The appropriate potential ensuring equipartition of
trajectories would be such that /(n) � �bF(n), which amounts to artificially flattening the probability density along the order
parameter n. Optimizing the biasing potential u requires knowledge of the quantities to compute, implying that the optimal
bias can only be constructed iteratively, or adaptively, as outlined by Oberhofer and Dellago [40].
Appendix B. Metropolization of Langevin dynamics

The unavoidable discretization errors are corrected in the ensemble average because the multi-state estimators uses the
ratio of actual generating probabilities [20]. Nevertheless, numerical efficiency depends on the choice of the time step Dt.
Too small a time step decreases the sampling efficiency because states along the generated trajectories appear to be strongly
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correlated. Conversely, too large a time step produces numerical entropy (dissipated work [20]) and one would observe that
the selected states of the successive paths are also separated by small numbers of steps on average. Both situations results in
increased statistical covariances in the path ensemble. Hence, in practice, the time step is tuned to achieve the best trade-off
between decorrelation and entropy production.

Unfortunately, for systems with many particles, discretization errors are important which imposes to choose a very small
time step. This situation is encountered with our tabulated EAM potential of Iron. We have therefore metropolized the
Langevin dynamics, i.e. we accept an iteration with probability [27,29].
Pacc
k ¼minð1; exp½�bðHkk

ðpkþ1; rkþ1Þ � Hkk
ðpk; rkÞ � Q kÞ�Þ
with the Metropolis rule. If the move is accepted, the new state is ~vkþ1 ¼ ðpkþ1; rkþ1Þ, otherwise we set ~vkþ1 ¼ ð�pk; rkÞ. The
change of sign for momenta preserves the reversibility of the Markov chain and we take Wðk! kþ 1Þ ¼ Hkkþ1

ð~vkþ1Þ�
Hkk
ð~vkþ1Þ. A rejection rate of a few percent [27] makes it possible to use a much larger time step, thus saving computational

time. Note that when a rejection occurs with probability 1� Pacc
k at iteration k, this quantity must be included in the condi-

tional probabilities Pcond(vn,n) whatever 0 6 n 6 N. Because the selecting probability Psel considers ratios of conditional
probabilities, the Metropolis rejections in the trajectories does not affect the work quantities Wn and the algorithm given
in Section 4.1 (see [19, Appendix B.3] for the detailed proof).

Finally, note that the two Ornstein–Uhlenbeck (OU) processes (9a) and (9d) of duration Dt/2 in the discretization scheme
can possibly be merged into a single one of duration Dt. As a result, the discretization Eqs. (9a)–(9c) and (9d), simplifies into
a leap-frog scheme [20] that generates a single noise per iteration
pi;kþ1=2 ¼ pi;k�1=2 þ ð‘i;k þ ~f i;kÞDt qi;kþ1 ¼ qi;k þm�1
i pi;kþ1=2Dt:
The quantity ‘i,kDt describes the momentum variation during the OU process twice longer
‘i;kDt ¼ ðpi;k�1=2 þ ~f i;kDt=2Þðe�~ciDt � 1Þ þ gi;k � ð‘i;k�1=4 þ ‘i;kþ1=4ÞDt=2;
where gi,k is a normal noise of variance ð1� e�2~ciDtÞmi=b while ‘i,k�1/4Dt/2 and ‘i,k+1/4Dt/2 denote the momentum variations
during the OU processes in (9a) and (9d). The leap-frog scheme could have been used in combination with the multi-state
estimator since here the work does not depend on momenta at integer steps.
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